Chromosomal Inversion – Types of Inversions, Describe Inversion Loop

Chromosomal Inversion – Describe Types of Inversion, Inversion Loop and Explain The Role of Inversion in Evolution

Chromosomal inversion are also called by different names (genetic inversion, chromosome inversion or inversion mutation). The Inversions are chromosomal mutations that concludes a segment of chromosome which is turned around 180o and is reinserted into the chromosome. It does not involve a loss of genetic information but simply rearranges the linear gene sequence. An inversion involves two breaks along the length of the chromosome prior to the reinsertion of the inverted segments.

Chromosomal Inversion

Chromosomal Inversion

Types of inversion

The inverted segment may be short or quite long and may or may not include the centromere. If the centromere is not the part of the rearranged chromosome segment, the inversion is said to be Paracentric, while if the centromere is a part of the inverted segment, the inversion is known as Pericentric.

Describe Inversion Loop In Chromosomal Inversion 

The organisms in which one inverted chromosome and one non-inverted homologue is present, are called Inversion Heterozygotes. Normal linear pairing between such chromosomes is not possible until they form an Inversion Loop as shown in Fig: 1.1. In other cases, no loop can be found and the homologues are seen to synapse everywhere but along the length of the inversion, where they appear separated. If crossing over does not occur within the inversion segment of the inversion, where they appear separated. If crossing over does not occur within the inverted segment of the inversion heterozygote, the homologues will segregate normally. When crossing over occurs within the inversion-loop abnormal chromatids are produced. In any meiotic tetrad, a single cross over produces two parental chromatids and two recombinant chromatids. In cases of a paracentric inversion, one recombinant is Dicentric, i.e., having two centromeres and one recombinant in Acentric, i.e., lacking a centromere. Both contain duplications and deletions of chromosome segments as well. During anaphase, an acentric chromatid moves randomly to one pole or the other, or may be lost, while a dicentric chromatid is pulled in two directions. This polarized movement produces Dicentric Bridges which may be recognized cytologically. A dicentric chromatid usually breaks, at some point so that part of the chromatid goes into next gamete and other part into another gamete during the reduction division. Therefore, gametes which gamete participates in fertilization, the zygote most often develops abnormally.

Chromosome Imbalance In Genetic Inversion or Chromosomal Inversion

A similar chromosome imbalance is produced as a result of a cross over event between a chromatid bearing a pericentric inversion and its non-inverted homologue. Following meiotic divisions, each tetrad yields two parental chromatids containing the complete chromosome complement of genes. The recombinant chromatids that are directly involved in exchange have duplications and deletions. However, no acentric or dicentric chromatids are produced. Gametes receiving these chromatids also produce variable embryos following their participation in fertilization.

Since fertilization involving these aberrant chromosomes do not produce viable offspring. It appears as if the inversion suppresses crossing over since cross over gametes are not recovered in the offspring. Actually, in inversion heterozygotes, the inversion has the effect of suppressing the recovery of cross over products when chromosome exchange occurs within the inverted region. If crossing over always occurred within a paracentric inversion or pericentric inversion, 50 % of gametes would be ineffective. The viability of resultant zygote is therefore, greatly diminished, Furthermore, up to one half of the viable gametes have the inverted chromosomes, and the inversion will be perpetuated within the species. The cycle will be repeated continuously during meiosis in future generations.

Types of Inversion Paracentric Inversion Pericentric Inversion

The effects of a single cross – over event between non-sister chromatids at point within a Paracentric (a) and Pericentric (b) Inversion Loop.

The inversion involves the new positioning of genes relative to other genes. If the expression of a gene is altered as a result of its relocation, a change in phenotype may result. Such a change is called Position Effect. In Drosophilla females, heterozygous for sex-linked recessive mutation with eye (w+/ w), the X chromosome bearing the wild-type allele (w) may be inverted, and the white locus moves to a point adjacent to centromeric heterochromatin. If the inversion is not present the heterozygous female has wild-type red eye, since the white allele is recessive. Females with the X chromosome inversion have eyes that are mottled or variegated (with red and white patches). Relocation of w+ allele next to a heterochromatin area seems to cause a loss of complete dominance over the w allele. Other genes located on the X chromosome will also behave in the same manner if relocated. Reversion to wild type expression has sometimes been noted. When this has occurred, cytological examination has shown that the inversion has been reversed to give the normal gene sequence.

Role of Inversion in Evolution

An inversion maintains a set of alleles at a series of adjacent loci provided they are contained within inversion. Because the recovery of crossover products is suppressed in inversion heterozygotes, a particular gene sequence is preserved intact in the viable gametes: If this gene order provides a survival advantage to organism having it, the inversion is beneficial from evolutionary point of view. For example, if the set of alleles ABcDeF is more adaptive than the sets AbCdeF or abcdEF, the favorable set will not be disrupted by the crossing over if it is maintained within a heterozgyous inversion. Theodosius Dobzhansky has shown the maintenance of different inversions on chromosome 3 of Drosophilla pseudoobscura through many generations, have made this species highly adaptive. The adaptations help in selection during the process of evolution.

Read Also:- Nature of the Endosperm in Angiosperms

Leave a Reply

Your email address will not be published. Required fields are marked *


Distributed by